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Correlations in Interfaces with Surfactants1

J. Stecki2

The existence or nonexistence of the bending coefficient in liquid interfaces, as
well as the applicability of the Helfrich free energy, is examined by comparing
correlations in the interfaces with or without a weak surfactant. In the latter
case, the formation of a bilayer is studied and density�density correlations and
height�height correlations are reported, analyzed, and compared with ``normal''
liquid interfaces. In particular, the role of lateral tension is discussed.
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1. INTRODUCTION

In our previous work we have investigated the structure of interfaces
between two immiscible liquids and between a liquid and its vapor [1�3].
We used the computer simulation and the method of molecular dynamics;
the liquids were formed by spherical particles interacting with Lennard�
Jones potentials, and only single planar interfaces were studied. It is
worthwhile to realize that this was but one particular case and that liquids,
in particular, multicomponent mixtures, can form a great variety of most
exotic phases. One such large group of systems is those containing a surfac-
tant as one component. A rather brief review [4] summarizes the basic
theoretical understanding of these systems. The references by Nelson et al.
[5] and the work of Dietrich and Napiorkowski [6] can additionally be
consulted.

In particular, two immiscible liquids, on the addition of surfactant, can
form microemulsions and lamellar phases. These phases, formed often in a
narrow range of state parameters (such as temperature T, pressure p, and
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concentrations x1 , x2 ,...) have many interfaces in their bulk, held in place
by their mutual repulsion among other factors, and are successfully
described by assuming their surface tensions to be vanishing or almost
vanishing. Their fluctuations are, therefore, ruled not by the ordinary
capillary waves and the underlying surface (interfacial) tension, but by the
rigidity (bending) coefficient and changes in curvature.

Similarly, liquid membranes and bilayers are described by a particular
set of concepts such as area per head-group, spontaneous curvature,
bending (rigidity) coefficient, and Gaussian curvature. To describe these
objects, of great common interest to physicists and biologists, a number of
phenomenological theories have been proposed, many of them based on
the Hamiltonian associated with the names of Canham and Helfrich [7].

An immediate question arises: If these membranes, bilayers, and inter-
faces in lamellar phases are ruled by their curvatures and associated
elasticity coefficients, what about the normal interfaces? Surely they are
capable of bending and of having nonzero curvature; it is, therefore,
legitimate, to search for presence or absence of the same effects in ordinary
interfaces.

And a related question is, What is a ``normal'' interface and what is a
membrane? What is it that makes an interface ``normal'' and what makes
it a membrane?

To understand better the transition from normal interfaces with non-
zero surface tension to those with a vanishing surface tension, we have
studied immiscible liquids with a weak surfactant as the third component.
Here we report results of MD simulations for an easier and simpler system,
a binary system solvent + surfactant in which the surfactant molecules
form a single bilayer. Our results include the correlations as given by the
structure factor.

In Section 2 we give a simple theoretical introduction; in Section 3 we
describe the model and the simulations and then we show and discuss the
interfacial structure factors. In Section 4 we discuss the conclusions.

2. BACKGROUND: FREE ENERGY, SURFACE TENSION, AND
CORRELATIONS

The product #A of the surface (interfacial) tension # and the area A is
the contribution of the interface to the total free energy F of the system;
thus F=Fb+#A, and since # is positive, lowering of the free energy can
normally be achieved by making A as small as possible. Hence, the plot of
F versus A looks like the straight line labeled A in Fig. 1. A membrane or
a bilayer has an optimal surface area ah per surfactant head: if A>Nah , the
object is stretched, if A<Nah , it is laterally compressed, and, therefore, the
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Fig. 1. Total free energy dependence on A, the area of the interface
or of the membrane-like object. (A) The normal interface: F=Fb+#A
and #, the slope, is constant. (B) What is predicted for a membrane-like
object for which F(A) has a minimum at a specific area per head.
(C) The general shape if coexistence of domains is assumed. Then # is
constant in the two-phase region, i.e., in the region of constant #.

hypothetical dependence of F on A looks like the curve marked B in Fig. 1.
Once we have allowed such possibilities, various other shapes of F(A) can
be invented [5, 8]. Still another F(A) dependence is suggested in Section 3.
If the existence of a minimum in F(A) is allowed, we reach the unsettling
conclusion that the surface tension defined as dF�dA can be positive or
negative:

A>A0#Nah , #=dF�dA>0 (1a)

A=A0#Nah , #=dF�dA=0 (1b)

A<A0#Nah , #=dF�dA<0 (1c)

This, however, can be explained as follows. Consider a definite setup, like
the one illustrated in Fig. 2, where the bilayer fills the periodic simulation
box, dividing the solvent into the upper and lower parts of the figure. The
interfacial tension can be readily calculated by the Kirkwood�Buff formula
[9, 10]

#= p� zz& p� xx (2)
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Fig. 2. A typical snapshot configuration of a bilayer; the ``a'' ends of dimers are marked
with diamonds, the ``b'' ends are marked with crosses, and the free ``a'' 's (the solvent
particles) are marked with dots. Here kT�==0.75, and there are 1440 dimers; the lengths
are in units of Lennard�Jones _��the collision diameter of the molecules.

where

p� ::=|
Lz

0
dz p::(z) (:=x, y, z) (3)

and p:: is the :: component of the stress tensor. Of course pyy(z)= pxx(z)
by symmetry. If p� zz<p� xx , then #<0, and conversely. But no reason can be
found why p� zz should not be smaller than p� xx .

In fact, for a bilayer immersed in a solvent, # loses its physical meaning
developed for normal surfaces. It is directly related to the lateral com-
pressibility K [11] by

KA0=(d#(A)�dA)|A=A0
(4)

Such is the quintessential difference between membranes�bilayers and
liquid�vapor or liquid�liquid interfaces. For discussions concerning the role
of diffusion (particle exchange), various ensembles, different types of
bilayers, membranes, and�or vesicles, the specialized literature [4, 5, 8]
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can be consulted. Note that when developing a description of Langmuir
monolayers, we also change the physical meaning (and the name) of the
derivative dF�dA.

Either object can and does fluctuate owing to thermal motion, and the
long-wavelength modes are clearly associated with a fluctuation in the sur-
face area A. For normal interfaces the free energy cost of a fluctuation is
#dA and # in the standard theory does not vary. This leads to the interfacial
Hamiltonian

H[h]= 1
2 | dx dy[#({h)2+V2h2] (5)

and to the height�height correlation function (in Fourier-transformed
form)

( |hq |2)=
kT

#q2+#!&2 (6)

where the parallel correlation length is

!2=
#

V2

(7)

Here V2 is a coefficient resulting from the external potential stabilizing the
planar interface [10]. If the capillary-wave, or interfacial, Hamiltonian is
improved by the addition of further terms, then the denominator in Eq. (6)
contains more than just #q2. Offhand, one expects this term to be the
second term D2 in a power series such as D0+D2q2+D4q4+ } } } , but
Dietrich and Napiorkowski [6] have shown that such a power series
diverges and should be replaced by D0+D2 q2+D4(q4 log q)+ } } } (strictly
speaking for long-range potentials like r&6). It is, therefore, safer to write

1�( |hq |2) =D0+;#q2+q4f (q) (8)

where ;=1�kT, D0=;V2 , D2=;#, and f (q) is unknown. Mecke and
Dietrich [12] defined the combination ;#+q2f (q) as the effective surface
tension ;#eff (q) and based their calculation on the density functional theory,
in which the rotation of the fluctuating density profile was (for the first
time) taken into account. Calculations become straightforward when using
the approach pioneered by Robledo et al. [13], based on the interfacial
Hamiltonian derived in a clear way from the exact second-order free-energy
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difference due to density fluctuations $\(r) in terms of the inhomogeneous
direct correlation function C(1, 2),

$F= 1
2 || d(1) d(2) C(1, 2) $\(1) $\(2) (9)

from which, in one approximation

H[h]=:
q

C� ( |q| ) hq h&q (10)

and

1�( |hq | 2) =C� (q) (11)

The function C� of one variable q is a projection of C(z1 , z2 , q) [13].
It results when $\ is parametrized as a small shift of the density profile
[3, 10, 13]. We have determined [3] this function from our simulations
[3], and we have shown unequivocally that there exists an initial region
q # [0, q*], where C(q)=C0+q2C2��i.e., a region of capillary waves that
furthermore is terminated by a sharp maximum near q*t1_, after which,
C(q) falls to reach a broad minimum near qt2?�_. If one wishes to con-
struct a power series C=C0+C2 q2+C4 q4+ } } } , it is clear that C4 must
be negative, and, moreover, from the general discussion of Stecki [3], it
follows that it is general feature of the liquid�vapor interface.

We can also make contact now with the theory of Mecke and Dietrich
[13] and with the experimental results [14] where the concept of the effec-
tive interfacial tension, in the sense of Eq. (8), is used. From our data for
C� (q) we can construct this quantity by simple division by q2: ;#eff=
(C� (q)&C� (0))�q2). Another possible definition is ;#eff (q)=(d�d(q2)) C� (q),
and there are still others. Figure 3 shows a plot of ;#eff (q) and the charac-
teristic fall with the increase in q; the confirmation of this result by recent
experimental data [14] is very gratifying. These results also mean that all
attempts to interpret C4 as a kind of bending coefficient are doomed
because C4 is always going to be negative in a liquid�vapor interface. In a
liquid�liquid interface [1] the agreement with the standard capillary-wave
theory was excellent but the extraction of the D4 term was not so
unequivocal (although a renewed interpretation of our data with the aid of
the theory of Dietrich and Napiorkowski [6] remains to be done).

Such was one way of representing and interpreting the scattering
factor S(q)t( |hq |2) , i.e., through the representation

1�S=D0+D2q2+D4q4+ } } } =D0+D2q2+q4f (q) (12)
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Fig. 3. The ``effective q-dependent surface tension'' calculated by dividing by q2

the function C(q) discussed and shown earlier [3]. Its shape as a function of q
is identical to that found in a real experiment [14] and calculated from density-
functional theory with rotation of intrinsic profile, except for the limiting region
q � �, where in our case the finiteness is ensured by the general properties of the
Ornstein�Zernicke function c for r12&>0.

Quite another representation has been used [11] for the height�height
correlation function of a simulated bilayer, namely,

S(q)ta�q4+b�q2 (13)

We do not know of any theoretical justification of this form. For normal
interfaces statistical mechanics predicts Eq. (6) as ``the most divergent
term'' [9, 10]. It is a broader issue that we do not address here. Certainly,
as an empirical formula, Eq. (13) is very successful and in what follows, we
have applied both of these representations to our new data on a liquid
bilayer formed by a weak surfactant in a one-component solvent. We
generalize Eq. (13) in an obvious manner,

S(q)t(a�q4)+(b�q2)+A+Bq2+ } } } (14)

adding more empirical terms for a better representation of the data.
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3. MODELING OF INTERACTIONS AND RESULTS

We use the model of spherical particles interacting with the Lennard�
Jones (6, 12) potentials with cutoffs. To have the simplest possible system
without unnecessary complications, we choose equal masses and equal sizes
but different cutoffs in the spirit of the WCA theory, used often in other
work [15, 16]. The interaction potential is

u:;(rij)=4=[((_�rij)
12&(_�rij)

6))&((_(rc
:;)12&(_�rc

:;)6))]_'(rc
:;&r ij)

(15)

with species index :=1, 2 for species a and b, respectively, and similarly
for species index ;. '(x) is the Heaviside function. The cutoff distance is
rc

:;=2.5_ if :=; and rc
:;=r*#21�6_ if :{;. All lengths are measured in

units of _. We model the surfactant as a dimer made of unlike particles that
interact with monomers according to the same interaction potential. The
inner bond interaction is u12(r) if r<r* and u12(2r*&r) if r>r*. This
model was proposed by S. Toxvaerd [17]. But it was Smit [18] who first
modeled in a simulation the surfactant as a dimer and has shown that it
already has some semblance to reality.

The ``standard'' version of our model is the one with equal masses and
with the same = for all pairs. The solvent is made of a's, and the bilayer is
made of bound a�b pairs. Therefore, the a end of the dimer plays the role
of the ``head'' in contact with the solvent (since the a�a pairs are favored
energetically) and the b end of the dimer plays the role of the hydrocarbon
part and likes to stay inside the bilayer, away from the solvent. This is
shown in Fig. 2. We have also investigated a few modifications. First, the
heads are often polar, as is the solvent, whereas the cohesive energy of the
hydrocarbon environment is low; we can thus make the ``a'' free�``a'' bound
interaction stronger than the rest. This did not enhance the formation of
the bilayer in any visible way but it did result in filling the bilayer with
solvent, to a large extent. We can also make the ``b'' ends heavier to slow
down the motions of the bilayer. Finally, we can add an additional repul-
sion of longer range between the b ends and the free a's so as presumably
to chase any solvent particles out of the inside of the bilayer; the latter
interaction can be a repulsive r&9 potential [11]. In the end, we did not
continue with these modified versions because the essential features of the
bilayer were not changed much. We did some simulations with a long-
range repulsive potential [11], because we found that it enhanced the q&4

contribution to the scattering factor S(q). [cf. Eqs. (13) and (14)].
We report here simulations with a periodic box with N=40,000 par-

ticles and Nd=1440 dimers, with box dimensions about 30_30_50, at
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temperature kT�==0.75. The molecular dynamics was performed with the
Verlet leap-frog algorithm and the Nose�Hoover thermostat [19]. The
preassembled bilayer adapted its own configuration very quickly, but, as
we started from a surface area of 50_50, the surfactant dimers aggregated
into domains. These grew in tune, though very slowly. An x, y projection
of an early structure with domains is shown in Fig. 4. If left to equilibrate,
a large connected domain resulted and one or two big holes filled with sol-
vent. This suggested that there might exist a membrane-like quantity, the
area per ``a'' head. Compressing the system in the lateral x, y directions
with a simultaneous expansion in the z-direction changes the surfactant
domains; eventually the x, y cross sections become homogeneous at an
area at which # is still positive. This is reminiscent of the two-dimensional
domain coexistence, known very well for monolayers. If this is the case, the
F(A) dependence might have a shape like the double inflexion curve (C) in
Fig. 1. Further lateral compression brings about an increase in p� xx= p� yy

and a decease in p� zz , hence, a decrease in # and a change in the x, y
morphology. Further compression diminishes #, and eventually very low
values of # can be reached. Such states appear to be stable. Compression

Fig. 4. Lateral domains of surfactant heads and tails formed when the surface area is
too large and the bilayer would be under stretching tension were it homogeneous.
Solvent molecules, which fill the holes, are not shown for clarity. All data shown are for
N=40,000, T*=0.75, and the ``standard'' model described in Section 3.
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to still lower areas produced a negative # but such states were not stable.
At most, it was found possible to maintain a bilayer with # about &0.01
(in LJ units). The bilayer reorganized itself, doubling its thickness in most
cases and restoring # to positive values. Also, it was not clear whether the
bilayer with slightly negative # was not a metastable state. It would persist
for 106 time steps, but this is no proof. The reorganized bi-to-quad layer
was very stable.

We have taken the view that the positions of the centers of mass of the
dimers determine the instantaneous surface [5] or, rather, two instan-
taneous surfaces of ``up-dimers'' and ``down-dimer.'' From these, two
correlation functions were constructed, the dimer�dimer density�density
correlation function,

Hdd=(\d (r1) \d (r2))

or, rather, its two-dimensional Fourier transform H(q), and the height�
height correlation function S(q)#(hqh&q). Each z-coordinate of a dimer
is treated as height [x, y, z] � [x, y, h(x, y)]. For each set of positions at
a given time, the average heights are calculated and the actual heights are
measured with respect to this instantaneous average. These two functions
do not differ much so we choose S(q) for the discussion. We wish to dis-
criminate between the two mathematical forms, given by Eqs. (12) and
(14). We note that Eq. (13) can be rewritten as (a+bq2)�q4, which implies
a limit of the expression S(q) q4. Therefore, we have analyzed the following
quantities: S, Sq, Sq2, Sq3, Sq4, and their inverses. Taking the limit q � 0,
for the damped (D0{0) and free (D0=0) cases, we calculate the limits of
the analytical forms of Eqs. (12) and (14) and test these detailed predic-
tions on our data. The expressions given by Eqs. (12) and (14) lead to
different behavior of such derived functions, as q � 0.

Figure 5 shows a plot of the height�height correlation S(q) for a
bilayer with a small positive #; due to the smallness of the capillary-wave
contribution, the plot is dominated by the approach to the first nearest-
neighbor peak seen near q=2?�_. The capillary-wave divergence is very
weak. Of the analysis outlined above, we show only one plot in Fig. 6; if
the ``traditional'' expression, Eq. (12), were appropriate, a plot of Sq2

versus q2 should be linear with a value at zero D2=;# and slope D4>0.
Clearly this is not the case. Alternatively, Eq. (13) requires that Sq4 should
reach a constant, and, for data shown in Figs. 5 and 6, this is not the case.
Detailed analysis is showed that data in Figs. 5 and 6 are well represented
(for not-too-large q) by Eq. (14), though with a=0, i.e., by St(b�q2)+
A+Bq2.
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Fig. 5. A typical plot of S(q) versus q for a bilayer (nearly tension-free, i.e.,
with # near zero). Note the position of the first peak near q=2?�_ and the
barely visible capillary-wave (or bending wave) divergence near q=0. The two
curves refer to two layers of the bilayer.

Fig. 6. A typical plot of 1�(Sq2) versus q. It is well represented by 1�(2.5+60q2

+0.05q4). The two curves refer to two layers of the bilayer. The plot also shows
how difficult it would be to reconcile it with the predictions of Eq. (12), for any
choice of parameters.
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4. CONCLUSIONS

Our results seem to confirm the view expressed above, namely, that
the membrane-like approach to interfaces is valid if there exists a series of
stable states with a minimum of free energy at a surface area A0 of a
tension-free state. For our weak surfactant modeled by a dimer, it appears
that the compressed states with A<A0 are not stable, and the expanded
state are stable within a narrow range of areas. For higher A's the bilayer
breaks into domains. For lower A's it reorganizes itself into a quad-layer
with a positive #. Then the expected bending modes in either Eq. (12)
(D4{0) or Eqs. (13) and (14) (a{0) do not appear. It may well be, in line
with the qualitative discussions [20], that a long chain length or a double
chain length is needed for the formation of a stable bilayer, i.e., such that
it would be stable in an interval of areas including the equilibrium tension-
less state, compressed states, and expanded states. Such a bilayer was
constructed [11], but the role of the additional special repulsive (r&9)
potential introduced in that work [11] in stabilizing the expanded and
compressed states is not clear.

Finally, we find it relatively straightforward to determine correlation
functions such as those reported here and we expect to study these correla-
tions in other surfactant systems.
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